skip to main content


Search for: All records

Creators/Authors contains: "LaMassa, Stephanie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Spectral energy distributions (SEDs) from X-ray to far-infrared (FIR) wavelengths are presented for a sample of 1246 X-ray-luminous active galactic nuclei (AGNs;L0.5–10 keV> 1043erg s−1), withzspec< 1.2, selected from Stripe 82X, COSMOS, and GOODS-N/S. The rest-frame SEDs show a wide spread (∼2.5 dex) in the relative strengths of broad continuum features at X-ray, ultraviolet (UV), mid-infrared (MIR), and FIR wavelengths. A linear correlation (log–log slope of 0.7 ± 0.04) is found betweenLMIRandLX. There is significant scatter in the relation between theLUVandLXowing to heavy obscuration; however, the most luminous and unobscured AGNs show a linear correlation (log–log slope of 0.8 ± 0.06) in the relation above this scatter. The relation betweenLFIRandLXis predominantly flat, but with decreasing dispersion atLX> 1044erg s−1. The ratio between the “galaxy-subtracted” bolometric luminosity and the intrinsicLXincreases from a factor of ∼10 to 70 from logLbol/(erg s−1) = 44.5 to 46.5. Characteristic SED shapes have been determined by grouping AGNs based on relative strengths of the UV and MIR emission. The averageL1μmis constant for the majority of these SED shapes, while AGNs with the strongest UV and MIR emission have elevatedL1μm, consistent with the AGN emission dominating their SEDs at optical and near-infrared wavelengths. A strong correlation is found between the SED shape and both theLXandLbol, such thatLbol/LX= 20.4 ± 1.8, independent of the SED shape. This is consistent with an evolutionary scenario of increasingLbolwith decreasing obscuration as the AGN blows away circumnuclear gas.

     
    more » « less
  2. Abstract We report the discovery of a new “changing-look” active galactic nucleus (CLAGN) event, in the quasar SDSS J162829.17+432948.5 at z = 0.2603, identified through repeat spectroscopy from the fifth Sloan Digital Sky Survey (SDSS-V). Optical photometry taken during 2020–2021 shows a dramatic dimming of Δ g ≈ 1 mag, followed by a rapid recovery on a timescale of several months, with the ≲2 month period of rebrightening captured in new SDSS-V and Las Cumbres Observatory spectroscopy. This is one of the fastest CLAGN transitions observed to date. Archival observations suggest that the object experienced a much more gradual dimming over the period of 2011–2013. Our spectroscopy shows that the photometric changes were accompanied by dramatic variations in the quasar-like continuum and broad-line emission. The excellent agreement between the pre- and postdip photometric and spectroscopic appearances of the source, as well as the fact that the dimmest spectra can be reproduced by applying a single extinction law to the brighter spectral states, favor a variable line-of-sight obscuration as the driver of the observed transitions. Such an interpretation faces several theoretical challenges, and thus an alternative accretion-driven scenario cannot be excluded. The recent events observed in this quasar highlight the importance of spectroscopic monitoring of large active galactic nucleus samples on weeks-to-months timescales, which the SDSS-V is designed to achieve. 
    more » « less
  3. null (Ed.)